Home / Research / Group / Teaching

Software

Publications

(* indicates student collaborators)

  1. Padilla, C.M.M.*, Xu,H., Wang, D., Padilla, O.H.M. and Yu, Y. (2023).
    Change point detection and inference in multivariable nonparametric models under mixing conditions.
    NeurIPS 2023. [pdf]

  2. Li, W.*, Wang, D., and Rinaldo, A. (2023).
    Divide and conquer dynamic programming: an almost linear time change point detection methodology in high dimensions.
    ICML 2023. [pdf]

  3. Padilla, C.M.M.*, Wang, D., Zhao, Z., and Yu, Y. (2022).
    Change-point detection for sparse and dense functional data in general dimensions.
    NeurIPS 2022. [pdf]

  4. Li, W.*, Wang, D., and Rinaldo, A. (2022).
    Detecting abrupt changes in sequential pairwise comparison data.
    NeurIPS 2022. [pdf]

  5. Wang, D., Yu, Y., and Willett, R. (2022).
    Detecting abrupt changes in high-dimensional self-exciting Poisson processes.
    Statistica Sinica, to appear. [pdf]

  6. Wang, D., Zhao, Z., Yu, Y., and Willett, R. (2022).
    Functional linear regression with mixed predictors.
    Journal of Machine Learning Research, to appear. [pdf] [R code]

  7. Yu, Y., Padilla, O.H.M., Wang, D., and Rinaldo, A. (2022).
    Network online change point localization.
    SIAM Journal on Mathematics of Data Science , to appear. [pdf]

  8. Wang, D., Yu, Y., and Rinaldo, A. (2021).
    Optimal change point detection and localization in sparse dynamic networks.
    Annals of Statistics, 49.1 (2021): 203-232. [pdf] [R package]

  9. Padilla, O.H.M., Yu, Y., Wang, D., and Rinaldo, A. (2021).
    Optimal nonparametric multivariate change point detection and localization.
    IEEE Transactions on Information Theory, 68.3 (2021): 1922-1944. [pdf] [R code]

  10. Padilla, O.H.M., Yu, Y., Wang, D., and Rinaldo, A. (2021).
    Optimal nonparametric change point detection and localization.
    Electronic Journal of Statistics, to appear. [pdf] [R code]

  11. Wang, D., Yu, Y., and Rinaldo, A. (2021).
    Optimal covariance change point localization in high dimensions.
    Bernoulli, 27.1 (2021): 554-575. [pdf]

  12. Rinaldo, A., Wang, D., Wen, Q.*, Willett, R., and Yu, Y. (2021).
    Localizing changes in high-dimensional regression models.
    AISTATS 2021. [pdf] [R package]

  13. Wang, D., Zhao, Z., Lin, K., and Willett, R. (2021).
    Statistically and computationally efficient change point localization in regression settings.
    Journal of Machine Learning Research, 22 (2021) 1-46. [pdf] [R code]

  14. Wang, D., Yu, Y., and Rinaldo, A. (2020).
    Univariate mean change point detection: Penalization, CUSUM and optimality
    Electronic Journal of Statistics, 14.1: 1917-1961. [pdf] [R package]

  15. Wang, D., Lu, X., and Rinaldo, A. (2019).
    DBSCAN: Optimal rates for density based clustering.
    Journal of Machine Learning Research, 20.170: 1-50. [pdf]

  16. Ciollaro, M., Genovese, C., and Wang, D. (2016).
    Nonparametric clustering of functional data using pseudo-densities.
    Electronic Journal of Statistics, 10.2: 2922-2972. [pdf]

  17. Perrotti, L., Walkington, N., and Wang, D. (2016).
    Numerical approximation of viscoelastic fluids.
    ESAIM: Mathematical Modeling and Numerical Analysis, 51.3: 1119-1144. [pdf]

Preprints

  1. Khoo, Y., Peng, Y.*, and Wang, D. (2024).
    Nonparametric estimation via variance-reduced sketching.
    Preprint. [pdf]

  2. Xu, H.*, Wang, D., Zhao, Z., and Yi, Y. (2022).
    Change point inference in high-dimensional regression models under temporal dependence.
    Preprint. [pdf]

  3. Wang, D. and Zhao, Z. (2022)
    Optimal change-point testing for high-dimensional linear models with temporal dependence
    Preprint. [pdf]

  4. Wang, D., Yu, Y., Rinaldo, A., and Willett, R. (2019).
    Localizing changes in high-dimensional vector autoregressive processes.
    Preprint. [pdf] [R code]

  5. Wang, D., Zhao, Z., Willett, R., and Yau, C.Y., (2020).
    Functional autoregressive processes in reproducing kernel Hilbert spaces.
    Preprint. [pdf]

  6. Chen, Y., Wang, D., Rinaldo, A., and Wasserman, L. (2016).
    Statistical analysis of persistence intensity functions.
    Preprint. [pdf]