Home / Research / Group / Teaching
Software
- [changepoints] an R package containing several methods for change point localization
Publications
(* indicates student collaborators)
- Padilla, C.M.M.*, Xu,H., Wang, D., Padilla, O.H.M. and Yu, Y. (2023). Change point detection and inference in multivariable nonparametric models under mixing conditions. NeurIPS 2023. [pdf]
- Li, W.*, Wang, D., and Rinaldo, A. (2023). Divide and conquer dynamic programming: an almost linear time change point detection methodology in high dimensions. ICML 2023. [pdf]
- Padilla, C.M.M.*, Wang, D., Zhao, Z., and Yu, Y. (2022). Change-point detection for sparse and dense functional data in general dimensions. NeurIPS 2022. [pdf]
- Li, W.*, Wang, D., and Rinaldo, A. (2022). Detecting abrupt changes in sequential pairwise comparison data. NeurIPS 2022. [pdf]
- Wang, D., Yu, Y., and Willett, R. (2022). Detecting abrupt changes in high-dimensional self-exciting Poisson processes. Statistica Sinica, to appear. [pdf]
- Wang, D., Zhao, Z., Yu, Y., and Willett, R. (2022). Functional linear regression with mixed predictors. Journal of Machine Learning Research, to appear. [pdf] [R code]
- Yu, Y., Padilla, O.H.M., Wang, D., and Rinaldo, A. (2022). Network online change point localization. SIAM Journal on Mathematics of Data Science , to appear. [pdf]
- Wang, D., Yu, Y., and Rinaldo, A. (2021). Optimal change point detection and localization in sparse dynamic networks. Annals of Statistics, 49.1 (2021): 203-232. [pdf] [R package]
- Padilla, O.H.M., Yu, Y., Wang, D., and Rinaldo, A. (2021). Optimal nonparametric multivariate change point detection and localization. IEEE Transactions on Information Theory, 68.3 (2021): 1922-1944. [pdf] [R code]
- Padilla, O.H.M., Yu, Y., Wang, D., and Rinaldo, A. (2021). Optimal nonparametric change point detection and localization. Electronic Journal of Statistics, to appear. [pdf] [R code]
- Wang, D., Yu, Y., and Rinaldo, A. (2021). Optimal covariance change point localization in high dimensions. Bernoulli, 27.1 (2021): 554-575. [pdf]
- Rinaldo, A., Wang, D., Wen, Q.*, Willett, R., and Yu, Y. (2021). Localizing changes in high-dimensional regression models. AISTATS 2021. [pdf] [R package]
- Wang, D., Zhao, Z., Lin, K., and Willett, R. (2021). Statistically and computationally efficient change point localization in regression settings. Journal of Machine Learning Research, 22 (2021) 1-46. [pdf] [R code]
- Wang, D., Yu, Y., and Rinaldo, A. (2020). Univariate mean change point detection: Penalization, CUSUM and optimality Electronic Journal of Statistics, 14.1: 1917-1961. [pdf] [R package]
- Wang, D., Lu, X., and Rinaldo, A. (2019). DBSCAN: Optimal rates for density based clustering. Journal of Machine Learning Research, 20.170: 1-50. [pdf]
- Ciollaro, M., Genovese, C., and Wang, D. (2016). Nonparametric clustering of functional data using pseudo-densities. Electronic Journal of Statistics, 10.2: 2922-2972. [pdf]
- Perrotti, L., Walkington, N., and Wang, D. (2016). Numerical approximation of viscoelastic fluids. ESAIM: Mathematical Modeling and Numerical Analysis, 51.3: 1119-1144. [pdf]
Preprints
- Khoo, Y., Peng, Y.*, and Wang, D. (2024). Nonparametric estimation via variance-reduced sketching. Preprint. [pdf]
- Xu, H.*, Wang, D., Zhao, Z., and Yi, Y. (2022). Change point inference in high-dimensional regression models under temporal dependence. Preprint. [pdf]
- Wang, D. and Zhao, Z. (2022) Optimal change-point testing for high-dimensional linear models with temporal dependence Preprint. [pdf]
- Wang, D., Yu, Y., Rinaldo, A., and Willett, R. (2019). Localizing changes in high-dimensional vector autoregressive processes. Preprint. [pdf] [R code]
- Wang, D., Zhao, Z., Willett, R., and Yau, C.Y., (2020). Functional autoregressive processes in reproducing kernel Hilbert spaces. Preprint. [pdf]
- Chen, Y., Wang, D., Rinaldo, A., and Wasserman, L. (2016). Statistical analysis of persistence intensity functions. Preprint. [pdf]